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A remark on the representation theory of the algebra U,(sl(n)) 
when q is a root of unity 

Zhang You-jint 
St Petersburg Branch of Steklov Mathematical Institute, Fontanka 27, St Petersburg 191011, 
Russia 

Received 26 March 1991 

Abstract. ~n associative aigebra is defined on the set oicerrain irreducibie representation 
spaces of the algebra U,(sl(n)) when q is a root of unity. This associative algebra is shown 
to be connected with some algebras defined by the decomposition N I ~  of tensor products 
of the irreducible representations of certain finite groups. 

1. Introduction 

In the study of the +,z-perturbated minimal models of conformal field theory [l], an 
interesting phenomenon on the representation theory of the algebra U,(s1(2)) was 
pointed out. When q is a primitive sixth root of unity, there are only three highest-weight 
irreducible representations with integer spins. If the corresponding representation 
spaces are denoted by V,, V,, V,, then a formal decomposition rule of the tensor 
products of these representations is given as follows: 

m!n(j,+j2,4-j,-j2) 

j = l j , - j a l  
y,oq*= E @ y  j, , j 2  = 0 , L  2. ( 1 . 1 )  

It was found that this decomposition rule is precisely the same as that of the irreducible 
representations of the symmetric group S3 and, moreover, if the bases of the representa- 
tion spaces are chosen appropriately, the 6-j symbols of the group S, coincide with 
those of the algebra U,(sl(2)). 

Now two questions arise naturally: Is the above-mentioned fact only an incidental 
phenomenon or is it in some senses general? What is the real nature behind this 
phenomenon? In this paper we will try to answer positively, to some degree, the first 
question by considering in general the algebra U,(sl(n)). 

We need to introduce some notation. The Hopf algebra U,(sl(n)) is generated by 
..,,.., H : ~  X i  ( i ~  ~.,, i = 1 .,-,...,.. ~ 2 ~ ~ ~ n - 1) with the following defining relations [2; 3j: 

(1.2a) 

(1.2b) 
(1.2c) 

(1.2d) 
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where m = 1 -ay .  and 

and the coproduct A is defined by 

(1 .3~1)  

(1.36) 

When q is generic, i.e. it is not a root of unity, an irreducible representation of 
sl(n) can be deformed to that 0; U,(sl(n)), and the representation theory of U,(sl(n)) 
does not change from that of sl(n) [4,5]. So if we denote the fundamental dominant 
weights of sl(n) by {a; !  i = 1; 2; . . . n - 1); then we can denote the irreducih!e rcp- 
resentation of U,(sl(n)) corresponding to the weight a =XF,' mjaj by V'"'~~"'~~~-'"-~',  
where m, P 0. 

In section 2 we will define a n  associative algebra on the set of certain irreducible 
representation spaces of the algebra U,(sl(n)) when q is a root of unity. In sections 
3 and 4, some concrete examples will be calculated so as to investigate more closely 
the properties of the defined algebra. 

2. The definition and some properties of the associative algebra 

We will define our algebra by using the algorithm given in [6], in which the generalized 
Littlewood-Richardson coefficients for the (k: I) representations of the Hecke algebra 
H,(q) when q is a primitive Ith root of unity were calculated. To explain this algorithm, 
let W denote the affine reflection group on Rk generated by the reflection 

P :  X H ( X k f I , X * , .  . . , X k - , , x l - I )  

and the symmetric group Sk.  For a Young diagram A, its length is denoted by I ( A ) .  
Let n, k, I be positive integers with 1 s k < I. The set of Young diagrams A with I ( A )  s k 
and A I  - A k  < I - k is denoted by and the set of Young diagrams A E A'k,') whose 
number of boxes is equal to n is denoted by 

In [6], (H",", dk.ll) was defined as an approximately finite-dimensional quotient 
of H,(q)  when q is a primitive Ith root of unity, d ; ,  were the structure constants of 
the Littlewood-Richardson ring Z'k')=@n Ko(HLk')) of H'*," [6]. For each A E Aik", 
[pl] denoted the corresponding class of minimal idempotents in H',*.'); 

d ; ,  can then be calculated by 

where the summation is over all Young diagrams TJ for which there exists an element 
W E  W such that w ( g + S ) =  u + 8 ;  here 8 = ( k - 1 ,  k - 2 , .  , , ,0) and E ( W )  is the sign of 
w with ~ ( p )  = -1, c:, is the classical Littlewood-Richardson coefficient [7]. 



Representation theory of U,(sl(n)) 853 

When q is generic, the Littlewood-Richardson ring for Hm(q) is defined as %'= $. KdH. ) ,  and the structure constants of %' are the classical Littlewood-Richardson 
coefficients e;, [6,7]: 

[P*l#[P,l=xc:,[P,l. (2.3) 
n 

We now define the following correspondence between [ p A ]  and v'"*."~..-~~-~': 
c*[P*I v'"L."2 ..... 

where 

When I ( A ) S  n we set 
[p*l- V<",.", ..... "".,) 

where 

m, = A , - A l ,  mz = A 2 -  A , ,  . . . , mH-, = An-, - A.. 

tions or' u,(si(nj) when q is generic can be written 8s [ 5 , J j  

(2.5) 
In the following we will also denote V"~.m~-.-m*-~' by VLA1 with A defined by (2.4) and 
(2 .5) .  Then the decomposition rule of the tensor products of the irreducible representa- 

y[Al@ ybl= c;,v["l (2.6) 

where I ( A )  < n, I ( F )  < n. We observe that (2.6) can be formally obtained by certain 
restrictions of (2.3) on the length of Young diagrams, so we now define the following 
algebra for U,(sl(n)) when q is a primitive lth root of unity: 

I (")<" 

Z(n,  I )={V["'IAEA(~~' )  , W ) < n )  

VA1@Vr*l=  Od,',V["' (2.7) 

with the multiplication on Z(n,  I) 

I*l*lrl 
I ( " ) < n  

where n 3 3 :  From !2,4) and (2.5) we see that Z ( n ,  I )  can also he defined as follows: 

(2.8) I "-1 

qn, 1 )  = { v'",.". .-" "-1' I j r l m j r - n + l  . 

When q is a primitive Ith root of unity the representation of U,(sl(n)) corresponding 
to v [ * ' ~ Z ( n ,  1 )  is still irreducible [SI. 

For U,(sl(n)) the q-dimension [9] is defined by 
dim. V'"," ..... "L,' 

where 

From our above definitions and [6,9] we have the following result. 
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Lemma 2.1. Z(n,  1 )  is an associative algebra with unity @'I, and the following equality 
holds: 

dim, @*'dim, @*I= E d I F  dim, @"I (2.10) 
" E  A;::;*, 

I ( v J S n  

where @"I, Ve"cZ(n, I), n a 3 .  

Equality (2.10) gives us a hint to find the connections, similar to the one given in 
the introduction, between Z ( n ,  I )  and some finite groups. First, we should find the 
subalgebras of Z(n,  I), which only contain elements with integer q-dimensions. 

3. The connection between Z(n ,  1) and the cyclic groups 

Let C. = { g  Ig" = 1) he the nth order cyclic group. Its n irreducible representations are 
denoted by u j ( g )  = di, where w. is a primitive nth root of unity. If the representation 
spaces are denoted by V, ,  respectively, then we have 

v;o vj, = vi i , j=O,  1 , . . . ,  n - 1  (3.1) 

where k = i + j m o d n .  We denote R,  the associative algebra with elements V, 
( j=O,  1 ,..., n-1) and (3.1). 

First, we consider the simplest non-trivial algebra Z(3,4).  From section 2 we have 
~ ( ~ , ~ ) = { ~ ( n . o )  vci.n) v ' O . l ~  , I  

V'1.0J@ V'I.O'= V'0.l) 

vci.nio vco.~)= vcn,n) 

Vco.uo VCO.I)= Vcim 

v l o . 0 1 ~  v(W = v(i.;J 

and 

i, j = 0, 1. 

If we set up the correspondence 
V(O,O)I+ E vii.n), v(O.IJtt v: 

(3.2) 

then obviously Z(3,4)  coincides with R,  and, moreover, we will show in the appendix 
that the 6-j symbols of the cyclic group C, coincide with that of the algebra U,(s1(3)) 
when 9 is a primitive fourth root of unity. 

In general, for any integers n, I with n 3 3, I >  n, the algebra Z(n, I )  contains a 
subalgebra H ( n ,  I) which is defined as follows: 

H(n,I)={Vj, , ,I j=O, 1 ,..., n - 1 )  

where Vi., = V(mt.m~..-,m,-t) with ' mk = 6,;. ( I -  n ) .  It is easy to see that the q-dimension 
of Vi,, is equal to 1, so by using the identity (2.10) and our definition of Z( n, I) we have 

Vi,,@ v2, = v:, (3.3) 

where k = j, +j, mod n, j l ,  j, = 0, 1, . . . , n - 1. Now, if we set up the correspondence 

vi,,- v, j = 0,1, . . . , n - 1 

then the algebra H (  n, I) is identified with the algebra R. related to the cyclic group C.. 
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4. T h e  algebras Z(3,6) and 2(4,6) 

In the following we will sometimes indicate the q-dimension m of V[*’ by writing it 
as vi’. We are now interested in the subalgebra of Z(3,6) defined by 

Q ={v(n.u~ ~ . I I  vi3.n) v‘n.3~ 
1 > 3 , I , l }  

and with the following formal decomposition rule: 
yiI.Il@yil.l’= v ( 0 0 )  . ~ ~ v ( I . I I @  y c 3 . 0 ~ 0  p 3 )  

y ~ l . l i ~  ~ ( 3 . 0 )  = yiI.11 

v i i . i i o  y(n.3) = yci.~i 

p.010 v(3.n) = y i u . 3 ~  

v i 3 . ~ i 0  v(n.3) = yco.u~ 

vim10 y(o.3) = yi3.0) 

Consider now the group G of order 12, which is a subgroup of the symmetric group 
S ,  and is generated by a = (12)(34) and b = (123). The irreducible representations of 
G are 

x u ( n ) = n u ( b ) = l  x l ( n )  = 1 ?r,(b) = w 
7 r 2 ( u )  = 1 ?i2(b) = w2 

2 W - W  ~ ( I - w )  4 ( w Z - 1 )  
w 2 - 1  w - w 2  2 ( w - 1 )  
I - w  2 ( 1 - w 2 )  w - w  2 

1 
7 1 3 ( 4 = 3 ( w 2 -  w) 

where w = e2nii3. If we denote the corresponding representation spaces also by V‘o”l, 
Vi3.”, ViO.” and respectively, then it is easy to see that the decomposition rule 
of the tensor products of the above irreducible representations of the finite group G 
precisely coincide with the formal decomposition rule defined on the subalgebra Q of 
Z(3,6). 

For the algebra Z(4,6) we find the interesting subalgebra 
y = ~ y l o . o . n i  v(2.n.01 vin,z,n) v(n.0,2) y ( o . ~ , o ~  v i ~ . o . i ~  

, I  , 1  , I  , z  , 2  1 
with the following formal decomposition rule: 

p . n . 0 1 0  yi2.0,01 = v‘u.2,01 y c 2 , u . a 1 ~  ycu.2.n1= p . u . 2 )  

yl,U,oi@ yiO.o,ll = yiu.o,oJ yio.2.o,@ yiu.2.0, = y~o,u.ul 

~ ( 0 . 2 . 0 1 0  vin.n.2i = yi2,0,0) 

p i . u i ~  yi2.0,ni= yii.0.1) 

p . u i 0  yiu.n.2i= v i i ,o . i )  

~ 1 3 0 . 1 i @  yiO,2,0)= ~ ‘ 1 , 0 , 1 1  

V ( O . I . U I ~  vii.o.ii = v ( 2 . 0 . 0 i ~  p . i . o i @  vcu,n.2i 

vii.o.iio vii .o. i i= p , o . o i o  p.n.i)o viu.2,oi 

viu.u.2)o yin.0,2i= vi0,2.0~ 

yiu.i.nio yin.z,ni = y ( o , ~ , o )  

vi~.o.iio vi2.0.01= ~ c o m  

vci.o.~~O yco,o.21= vco.i.o~ 

y C O , l , U I @  yi0 , l .O)  = yCO.O.Ol@ vi1.0.11@ y(0.2.01 
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We now consider the finite group D of order 12, with generators a, b which satisfy 
the following relations: 

a 3 = i  b 4 = 1  ab = ba-'. 

This finite group has the following six irreducible representations: 

u o ( a )  = 1 u o ( b )  = 1 u , ( a ) = l  u , ( b ) = i  

u 2 ( a ) = l  u2( b )  = -1 u,(a) = 1 U,( b )  = - i  

where w = e211"3. If we denote the corresponding representation spaces also by Vco,o.O), 
v(2.0.0) v(0.2.0' "(0,0,2, ~ C O . l . 0 ~  and yCl .O.1)  , respectively, as in the case of Z(3,6)  then 
the decomposition rule of the tensor products of the above irreducible representations 
of the finite group D coincides with the formal decomposition rule defined on the 
subalgebra Y. 

5. Conclusion 

We have shown the connection between the decomposition rule of the tensor products 
of the irreducible representations of the algebra U,(sl(n)) and that of some finite 
groups. However, we have not yet discussed the connections between their 6-j symbols, 
which is also very interesting. To illustrate this connection we will show in detail in 
the appendix that the 6-j symbols of the cyclic group C ,  coincide with that of the 
algebra U,(s1(3)). However, since to calculate the 6-j symbols of the algebra U,(sl(n)) 
is difficult, in general, we can now only give the following conjecture. 

Conjecture. Under our correspondence between the irreducible representations of the 
finite groups C,, 0, D and that of the algebra U,(sl(n)), the 6-j symbols of these finite 
groups coincide with that of the algebra U,(sl(n)). 

We hope that our results will also have applications in conformal field theory [l]. 
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Appendix 

We will calculate in detail some of the 6-j symbols of the algebra U,(s1(3)), which 
will be connected with the 6-j symbols of the cyclic group C,. We first introduce the 
notation of 6-j  symbols [IO]. 

Let V’tQ VJ@ VJ3 be the tensor product of three irreducible representations of a 
given algebra A. There are two simple ways to obtain irreducible components in this 
representation. One is to decompose first V’cO V’z = Xj,,@ V’az, and then to take irreduc- 
ible submodules in V’l@ V’3. In this way we obtain a complete orthogonal base in 
V’bO V’@VJ~. Denote the base elements of a submodule V’ in V’~0VJ2OVJ3 by 
e k ’ ( j ,  j21j3), where m = 1,2, . . . , dim V’. The second way is to decompose first VJ@ 
VJ3=Xj2,@VJ~3,, and then V’lOV’23. In this way we obtain e y ( j , l j ? j 3 )  ( m =  
1,2,, , , ,d im V’), which are base elements of the irreducible submodule VI. 

The elements of the matrix which connects the above two bases are called 6-j 
symbols: 

e j d ( j  m 1J2 . I J J = E  . { ’ . J1 j 2  j ,2 
jn 13 j j23 

1 m 1 , J 2 J J  . . 

We will denote the elements of an orthonormal base of an irreducible submodule 
VJ- in V’18 V’z by e $ ( j l ,  j 2 ) ,  ( m  = 1 , 2 , .  . . ,d im V’12). 

Now consider the irreducible representations of U,(s1(3)). We will denote the 
representation spaces VC0,O’, V“.”, V“.”, f l 2 . O J ,  V‘o.2’ and V(i,’J by V’ ( j = O ,  1,. . . , 5 ) ,  
respectively, and the corresponding representations by pi ( j  = 0,1,. . . , 5 ) .  Denote the 
base elements of V’ by e i  ( k  = 1,2, . . . ,dim V’); the matrix E,’ = (ak.,) is defined by 
akr  = 6,*6,,. Then we have 

p o ( X : ) = p o ( H t ) = O  i = l , 2  

P Y X : )  = E2J P ’ W : )  = E,,> P l ( x ; )  = €1.2 

P ’ ( X 3  = P“) P ’ ( X 3  = p ’ ( X ? )  

PYX:)  = [21’/2E2,1 +[21”2E4.2+ €5.3 

P Y X : )  = €3,2+[211’2ES,4+[21i/2~6,5 

P Y X ; )  = €2,,+~21”~€4,5+~21i’2E5,6 

f ‘ (xi)  = €2,3 P ’ ( H i )  = €i,i-E2,2 p ’ (H2)=  E 2 , 2 - € 3 . 3  

p 2 ( H i )  = p ’ ( H 2 )  p2(H2)  =  HI) 

p 3 ( x ; )  = [ ~ 1 1 ’ 2 ~ l , 2 “ ~ l ’ ~ 2 E 2 , 4 +  €3.5 

p 3 ( H ~ ) = 2 ~ i , i + ~ ~ , ~ - 2 ~ ~ , ~ - ~ 5 , 5  

p’(H2) = € 2 . 2 -  &,3+2&,4- 2% 

P 4 ( X 3  = P”) P Y X ; )  =P’(x;) 
p4(H1)=p’(H2) p 4 ( H 2 )  = p ’ ( H d  

p ’ ( X : )  = €2,I+(~1[2]~”2)+d~[2l1~2€~,~+~~~[2l~1’2+d~~2l‘~2~€s,~ 
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P’(X:) = 4 . 1  + ( c I [ ~ I ~ ~ ~ + ~ ~ [ ~ I - ” ~ ) E ~ , ~ +  (~2[2]’ /~+ d2[2]-’l2)ES,, 

+ [211~f (~E7 .~ - -E7 , J )  4 + E8,6 
i 

~’(X;)=E,,2+[21 1/2 ( I  c. E~,s-’ f 4 4 )  + ( ~ , [ 2 ] - ” ~ + d ~ [ 2 ] ’ / ~ ) E ~ , ~  

+(c2[21-li2+ d2[2]’/2)E5.6+ E7,n 

E 2 , d - t  E2.5 + ([Z]’/’C, +[2]-’/2d1)E4,7 ps(X;)= El,3+[2]112 2 
d l  1 (: 

+([2]’/’c2+ [2]-1’2d2)Es.7 + E6,8 

P’(HI) = €1.1 - E Z . Z + ~ E , , ~ - ~ E C , , ~ +  ET,,- €8.8 

pS(Hz) = €1.1 +2Ez,z- E,,,+ €6.6-2E7.7- En.8 
where I = c,dZ - c2dl,  c,, d; are q-numbers which satisfy i # 0. 

It is now easy to obtain 

e%l, 2) = -[31~~/’(q-’/~e:@e:- &e:+ q’/’e:@e:) 

e;(& 2) =&e: 
e 3 2 , ~ )  = [ 2 ] ~ 1 / 2 ( q ‘ / ‘ e : @ e : + q - ‘ / 4 e : @ e : )  

e:(2,2) = e : @ &  e:(2,2) =&e: 

e:(& 2) = [2]-1/2(q1/4e:@e:+ q-1/4e:@e:) 

e:(2,2) =[Z]-1/2(q1/4e:@e:-q-‘/4e:@e:) 

e:(2,2) = [2]-1/2(q1/4e:@e:- q-1/4e:@e:) 

e:(2,2) = [~]-I/~(q’/~e:@e:- q-’/4e:@e:) 

e?(1, 1) = [ ~ ] - ‘ ” ( q ~ ’ ~ e : @ e : - q ~ ’ / ~ e : ~ e : )  

e ; ( ] ,  1) = [2]-’/’(q1/‘ee: @ e: - q-1/4e:@ e : )  

e ; ( ] ,  1) = [2] -”2(q”“e:@e:-q-1’4e:@e:)  

e32,2) = [2]-’/2(q114e:@e:+ q-”‘e@e:) 

e:( 1,4) = [2]-1/2q-1/4e:@ e;-  le:@ e l +  [21-’q’/~e: @e$ 

&I, 4) = q-’/2e:@e~-[2]-’/2q-1’~e:@e~- [~]-‘e:@e: 

+ [2]-1q1/2e:@e: 

e:(1,4) = [21-’q”e:@e~-[2]-1q-1/2e:@e:+[2]“”q1/‘e:@e~. 

So we have 

e72(1, 212) = -[3]-1’2(q-1/2e:@ e:- e:@&+ q’/’e:@e:)@e: 

e:.’(] 1 2 , ~ )  = [2]-’/2{q1/4[2]-’2’e:~(q’/4e:@,:-q-1/4 e 3 @ 4  2 

-q-1/4[2]-l/2 e,@ I (ql i4e:@ e:- q-1’4e33 e : ) }  

+q-1/4e:@ e:) + [2]-’/2q1/2e:@ (q1’4e:@ e:+ q-1/4e:@ e:). 

ey2(1 12.2) = [2]-1/2q-’/4e:@ e:@ e:- [21-”~e:@(q”~e:@ e:  
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It is easy to see that 

e?’(1,2/2) = [3]-1/2e:,2(1 12, 2)-[2]’/2[3]-”2q’/4e~2(1 12,2) 

and, similarly, we have 

e~’ (1 ,2 (2 )=[3 ] - ’ / ’ e~ (1  ( ~ , ~ ) - [ ~ ] ‘ / ~ [ 3 ] - ’ ’ ~ q ’ / ~ e ~ ~ ( 1 ( 2 , 2 )  m = 2,3.  

So we obtain 

In a similar way we obtain 

2 2 1  
1 2 0  

{ ] =[3]-”’, 

When q is a primitive fourth root of unity, all the above 6-j symbols are equal to 
1 so, if we identify the representation spaces V< of the cyclic group C, with V’ 
( j  = 0, 1,2), then we see that the 6-j symbols of the cyclic group C, coincide with those 
of the algebra UJsI(3)). 
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